Dortmund students work with ATLAS data

The ATLAS Open Data platform is inspiring new ways to teach high-energy physics. Universities can incorporate the data into their curriculum, giving their students hands-on analysis experience and introducing them to the world of research.

Read more →

An exceptional summer

For many students, summer means sun and beach volleyball. For some, though, it is an opportunity to learn at ATLAS! Thanks to CERN’s Summer Student Programme, every year dozens of university students come to ATLAS to spend their holidays in this unique environment. During these three months they alternate between lectures and work, always supported by their supervisors. This summer, ATLAS hosted 50 students from 31 different countries. Here are some of their stories.

Read more →

Precision measurements with multi-TeV energy jets

The strong force is one of the four fundamental interactions of Nature. It governs the interactions between quarks and gluons, and is thus responsible for the stability of ordinary matter. In the proton-proton collisions at the Large Hadron Collider, the strong force is seen in the production of collimated sprays of mesons and baryons, known as hadron jets. The ATLAS Collaboration has released the measurement of the inclusive jet production cross sections at the new 13 TeV energy frontier.

Read more →

ATLAS highlights from ICHEP2016

The International Conference on High Energy Physics (ICHEP) wraps up its 38th edition today in Chicago. For ATLAS, it brings to a close an intense period of analysis. The collaboration presented 64 new sets of results at the conference, ranging from detector performance studies to measurements of Standard Model processes to searches for new physics. All in all, a rather stellar turnout.

Read more →

ICHEP results presented with style!

For those of you with an affinity for Twitter, you’ll know that the ICHEP press crew have been utilising all of their dark arts to bring you the most interesting results as they’re presented at ICHEP 2016.

Read more →

Hunting for new physics with boosted bosons

The Standard Model is a tremendously successful theory that describes our best understanding of elementary particles and their interactions, and even predicted the existence of the Higgs Boson. It does not however explain ~95% of the known universe – including Dark Matter and Dark Energy – and does not include a description of gravity.

Read more →

Pages