Searching for Dark Matter with the ATLAS detector

5th March 2019 – When we look around us, at all the things we can touch and see  all of this is visible matter. And yet, this makes up less than 5% of the universe.

Read more →

First ATLAS result with full Run 2 dataset: a search for new heavy particles

27th February 2019 – Could a Grand Unified Theory resolve the remaining mysteries of the Standard Model? If verified, it would provide an elegant description of the unification of SM forces at very high energies, and might even explain the existence of dark matter and neutrino masses. ATLAS physicists are searching for evidence of new heavy particles predicted by such theories, including a neutral Z’ gauge boson.

Read more →

ATLAS honours six new Thesis Award winners

22nd February 2019 – On Valentine’s Day 2019, the ATLAS Collaboration took a break from the usual rhythm of scientific discussion to showcase some of its most junior members. In a celebration in CERN’s Main Auditorium, the collaboration held its 10th annual ATLAS Thesis Awards.

Read more →

Preparing ATLAS for the future

20th December 2018 – Long Shutdown 2 (LS2) of the Large Hadron Collider commenced last week, as the accelerator powered down and the entry to the ATLAS cavern opened wide. Over the next two years, teams from across the ATLAS Collaboration will be upgrading and consolidating their experiment. On the agenda: the refurbishments of key electronics, the maintenance of various detector components and – critically – the installation of new detectors.

Read more →

ATLAS completes data-taking for Run 2

3rd December 2018 – Beams in the Large Hadron Collider came to a stop today, closing out four years of record-breaking operation for the ATLAS experiment. Run 2 saw the extraordinary exploration of the high-energy frontier, as the ATLAS experiment brought new understanding of particle physics.

Read more →

In conversation with Martine Bosman, a pioneer of ATLAS hadronic calorimetry

26th November 2018 – A long-standing member of the ATLAS Collaboration, Martine Bosman is one of the pioneers behind the Tile Calorimeter. Over her long career with the Collaboration, she has held several key roles: from convener of the Radiation Task Force and the Top Quark Group to Collaboration Board Chair. In this profile piece, Martine shares experiences and reflects on how the ATLAS Collaboration has grown and changed.

Read more →

Producing four top quarks at once to explore the unknown

6th November 2018 – For several decades, particle physicists having been trying to better understand Nature at the smallest distances by colliding particles at the highest energies. While the Standard Model of particle physics has successfully explained most of the results that have arisen from experiments, many phenomena remain baffling. Thus, new particles, forces or more general concepts must exist and – if the history of particle physics is any indication – they could well be revealed at the high-energy frontier.

Read more →

ATLAS celebrates “dedicated and creative” collaboration members with Outstanding Achievement Awards

15th October 2018 – On 11 October 2018, during its semestrial collaboration meeting at CERN, ATLAS celebrated outstanding achievements of its collaboration members with an awards ceremony. Established in 2014, the Outstanding Achievement Awards give recognition to excellent contributions made to the collaboration in all areas, excluding physics analysis.

Read more →

New ATLAS result of ultra-rare B-meson decay to muon pair

25th September 2018 – The study of hadrons – particles that combine together quarks to form mesons or baryons – is a vital part of the ATLAS physics programme. Their analysis has not only perfected our understanding of the Standard Model, it has also provided excellent opportunities for discovery. On 20 September 2018, at the International Workshop on the CKM Unitarity Triangle (CKM 2018), ATLAS revealed the most stringent experimental constraint of the very rare decay of the B0 meson into two muons (μ). 

Read more →

ATLAS searches for double Higgs production

5th September 2018 – The Brout-Englert-Higgs (BEH) mechanism is at the core of the Standard Model, the theory that describes the fundamental constituents of matter and their interactions. It introduces a new field, the Higgs field, through which the weak bosons (W and Z) become massive while the photon remains massless. The excitation of this field is a physical particle, the Higgs boson, which was discovered by the ATLAS and CMS collaborations in 2012.

Read more →

Pages