A busy day in the life of high energy physicist

My work involves analyzing data to try to understand how nature works at the most fundamental level, by searching for new particles and ways in which they interact. Specifically, I am looking at the top quark, which is the heaviest fundamental particle known to exist, with a mass of about 180 times that of a proton.

Read more →

Continuing the search for extra dimensions

For a long time, physicists have assumed that space-time has four dimensions in total – three of space and one of time – in agreement with what we see when we look around us. However, some theorists have proposed that there may be other spatial dimensions that we don’t experience in our daily lives.

Read more →

Di-photons in the spotlight

The ATLAS collaboration has now released the final results on the search for new physics in the di-photon channel using 2015 data.

Read more →

Something went bump in the night

ATLAS has published hundreds of studies of LHC data, with the Higgs boson discovery being perhaps the best known. Amongst the Run 1 searches there was one which stood out: the diboson excess.

Read more →

A peek inside the proton…

When the protons from the LHC collide, they sometimes produce W and Z bosons, the massive carriers of the weak force responsible for radioactive decays. These bosons are produced in abundance at the LHC and ATLAS physicists have now precisely measured their production rates using 13 TeV proton-proton collision data recorded in 2015.

Read more →

Weighing in on the top quark mass

ATLAS has released a new precise measurement of the mass of the top quark, the heaviest known elementary particle.

Read more →

Pages